Effect Of High Altitude On Oral Bacterial Biodiversity And

Special reference to Himalaya Mountains Region.

Effects of High Altitudes on the Electrical Activity of the Rhinencephalon in the Rat

Observations Upon the Effect of High Altitude on the Physiological Processes of the Human Body, Carried Out in the Peruvian Andes, Chiefly at Cerro de Pasco

Report to the Peru High-Altitude Committee

The Physiological Effects of High Altitude

Proceedings of a Symposium Held at Interlaken, September 18-22, 1962

Pergamon

Effects of High Altitude on Neurological and Pulmonary Function:
The Effect of High Altitude on Visual Evoked Potentials in Humans on Mt. Everest

This is a beautifully written and illustrated account of the problems of coping with exposure to high altitude. The features of acclimatization in humans are examined, with chapters devoted to the effects of high altitude on the cardiopulmonary and digestive systems, sleep, fertility and pregnancy, infection and allergy, athletic performance, and cerebral function. There are also detailed descriptions of the various high-altitude diseases. As well as being of obvious practical significance to those clinicians accompanying or responsible for climbers, tourists, soldiers, athletes, and astronomers at high altitude, this completely revised fourth edition has a broad scientific appeal, with up-to-date information on hyperbaric treatment of acute mountain sickness, the new syndromes of subacute mountain sickness in Tibet and India, and cancer in the Andes.

First published in 1925, this two-volume work deals with the blood's role in respiration. This first volume analyses the effect of high altitudes on the blood's ability to retain and diffuse oxygen. The text is illustrated with diagrams, maps and photographs relating to the changes human physiology undergoes at altitude, including changes in circulation rate, pulse and the nature of red corpuscles. This book will be of value to anyone with an interest in the history of medicine or in haematology.

Presents the full text of an article entitled "Outdoor Action Guide to High Altitude: Acclimatization and Illnesses," by Rick Curtis. Discusses high altitude, altitude illnesses, acclimatization, prevention of altitude illnesses, preventive medications, acute mountain sickness, high altitude pulmonary edema, and high altitude cerebral edema.

A turbulence response investigation was conducted with the XB-70 airplane. No special turbulence penetration techniques, speeds, or other restrictions were specified for the investigation, nor were any flights made solely to obtain turbulence data. During 79 flights, turbulence was encountered, and recorded on a VGH recorder, 6.2 percent of the total flight distance at supersonic speeds above an altitude of 12,192 meters (40,000 feet). Geographical locations are given for selected turbulence encounters. For 22 flights the airplane was instrumented to measure true gust velocities and the structural acceleration response to turbulence. The turbulence intensities measured were very low in comparison with those measured at high altitudes in other investigations. Acceleration response spectra, frequency response transfer functions, and coherence functions were computed from three turbulence
encounters at Mach numbers of 0.88, 1.59, and 2.35. Results are compared with calculated studies. Frequencies from the vertical and lateral structural modes, dominant in the airplane acceleration responses, were compared with the natural frequencies of the human body in the vertical and lateral directions.

A comprehensive update to this preeminent and accessible text, this fifth edition of a bestseller was developed as a response to man's attempts to climb unaided to higher altitudes and to spend more time in these conditions for both work and recreation. It describes the ever-expanding challenges that doctors face in dealing with the changes in human physiology. Davos Platz - And the effects of high altitude on phthisis is an unchanged, high-quality reprint of the original edition of 1881. Hansebooks is editor of the literature on different topic areas such as research and science, travel and expeditions, cooking and nutrition, medicine, and other genres. As a publisher we focus on the preservation of historical literature. Many works of historical writers and scientists are available today as antiques only. Hansebooks newly publishes these books and contributes to the preservation of literature which has become rare and historical knowledge for the future.

Description: Items from the service of Leon E. Davis. The Effects of High Altitude on the Human Body. Altitude Training Unit, Station Hospital, Tyndall Field, Florida.

Changes in stroke volume of the right and left heart were studied in relation to tolerance to altitude. It was concluded that the pulmonary circulation might be regarded as a limiting factor of importance for performance at altitude. Chronic experiments on rabbits with chronic implanted heart electrodes were performed with partial success. The animals can be kept alive about one month after the operation. The results of these chronic experiments showed that the contractile capacity of the right heart is strengthened, increasing the right heart stroke volume within one week period of training-exposure to hypoxic condition. This fact supports the view that the improvement of the right heart capacity might be involved in the establishment of acclimatization to altitude. Changes in ascorbic acid in different organs at altitude are being studied in order to elucidate the role of this substance in acclimatization or tolerance to altitude. The results obtained so far show that the well acclimatized or tolerant animals have a larger capacity for utilizing ascorbic acid at altitude than do unacclimatized or less tolerant animals. This suggests that the administration of large amount of ascorbic acid may improve the tolerance to hypoxia. (Author).

Leading authorities on high-altitude physiology contribute to this work, which is divided into three sections: Man at Extreme Altitude; Sleep and Restoration at High Altitude; and Physiology of Permanent Residents of High Altitude. Based on a symposium on physiology at high altitude sponsored by the American Physiological Society, the volume includes several chapters on the achievements of the 1981 American Medical Research Expedition to Mt. Everest, where the first physiological measurements at altitudes above 8,000 meters were recorded. With growing interest in the study of human performance in these conditions, this text marks a lasting achievement in high-altitude physiology.

Hypoxia caused by rapid travel to high mountain areas can have devastating effects on the health and performance of sensitive individuals. To better
understand the factors involved in these detrimental effects, in 2002, the Palo Alto Veterans Affairs Hospital (PAVA) and the United States Army Research Institute of Environmental Medicine (USARIEM) culminated a 3-yr study entitled "Effect of energy deficit on work performance at 4,300 m elevation." The overall goal was to determine the effects of energy deficit, antioxidants, and carbohydrate supplementation on acute mountain sickness (AMS) and physical work performance during acclimatization to 4,300 m. A substudy, incorporated into the main design, investigated the relationship between postural stability (balance), altitude exposure, exercise, and antioxidant supplementation.

This book covers studies on the systematics of plant taxa and will include general vegetational aspects and ecological characteristics of plant life at altitudes above 1000 m. from different parts of the world. This volume also addresses how upcoming climate change scenarios will impact high altitude plant life. It presents case studies from the most important mountainous areas like the Himalayas, Caucasus and South America covering the countries like Malaysia, Sri Lanka, India, Nepal, Pakistan, Kirghizia, Georgia, Russia, Turkey, Indonesia, Malaysia and the Americas. The book will serve as an invaluable resource source undergraduates, graduate students, and researchers.

The goal of the Ultima Thule Everest Expedition was to investigate the effects of high altitude on cerebral function. We were interested in noninvasive methods of assessing cerebral function at altitude and thus used electrophysiological tests involving cortical evoked potential studies and a drug study using Dilantin and placebo in a double blind randomized fashion. The subjects were climbers and support members of the expedition. Our hypothesis was that acute mountain sickness was a form of cerebral edema and could be objectively assessed with visual evoked potential measurements. Visual evoked potentials were chosen since it has been shown that these wave forms are directly altered by raised intracranial pressure. Dilantin was chosen as a drug that works in the CNS and stabilizes brain function. We hypothesized that Dilantin might prevent some of the symptoms of acute mountain sickness. Our studies revealed that exposure to high altitude, both with and without the symptoms of acute mountain sickness, altered the evoked potential patterns in a significant fashion. With comparison of baseline measurements to high altitude measurements it was seen that certain individuals had objective evidence of transient raised intracranial pressure. The Dilantin study was minimally conclusive based on lack of symptoms of altitude sickness, thus making comparison of the effects of Dilantin to placebo very difficult. However, it was seen that the subjects taking Dilantin had fewer and less severe headaches than the placebo group.

Over the last decade the science and medicine of high altitude and hypoxia adaptation has seen great advances. High Altitude: Human Adaptation to Hypoxia addresses the challenges in dealing with the changes in human physiology and the particular medical conditions that arise from exposure to high altitude. In-depth and comprehensive chapters cover both the basic science and the clinical consequences of exposure to high altitude. Genetic, cellular, organ and whole body system responses to high altitudes are covered and chapters discuss these effects on a wide range of diseases. Expert authors provide insight into the care of patients with pre-existing medical conditions that fail in some cases to adapt as well as offer insights into how
high altitude research can help critically ill patients. High Altitude: Human Adaptation to Hypoxia is an important new volume that offers a window into greater understanding and more successful treatment of hypoxic human diseases.

The physiological effects on pilots during high altitude flight are discussed. The symptoms of high altitude sickness resulting from oxygen deficiency are described.

Is it possible that a week-long high altitude training is sufficient to achieve a better performance in comparison to a training week at normal sea level? The aim of my Matura paper is to answer this question. The paper consists of a theory part which gives an overview of the most important points of high altitude training and describes the adjustment mechanisms which occur in the body due to the elevated altitude. To investigate the hypothesis, nine athletes conducted a 2000 m run before and after the high altitude training. The results indicated that the athletes who spent a week at elevated altitude could improve their performance more, in comparison to the control athletes who stayed at home. Seven out of the nine athletes were faster in the second test run. In order to find out if a one week altitude training has long-term effects, four athletes carried out a third test-run, one month after the training week. Every athlete achieved the best result in the third run, if compared to all test runs. Additionally, the oxygen saturation of ten people was measured before, during and after the high altitude training in Zermatt. On average the SpO2 was lower at elevated altitude and rose after the training week. Long-term adjustments of the SpO2 could not be found. A relation between the oxygen saturation change and the performance chance existed only when there were significant changes of the oxygen saturation or the performance.

Copyright: ff25b850af41bcdeda4f727987ac7c69